MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. CC490K Brass

R56401 titanium belongs to the titanium alloys classification, while CC490K brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is CC490K brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
15
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 940
230
Tensile Strength: Yield (Proof), MPa 850
110

Thermal Properties

Latent Heat of Fusion, J/g 410
190
Maximum Temperature: Mechanical, °C 340
160
Melting Completion (Liquidus), °C 1610
980
Melting Onset (Solidus), °C 1560
910
Specific Heat Capacity, J/kg-K 560
370
Thermal Conductivity, W/m-K 7.1
72
Thermal Expansion, µm/m-K 9.6
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
16
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
16

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 38
2.9
Embodied Energy, MJ/kg 610
47
Embodied Water, L/kg 200
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
28
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
54
Stiffness to Weight: Axial, points 13
6.8
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 59
7.3
Strength to Weight: Bending, points 48
9.5
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 67
8.2

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
81 to 86
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0 to 0.5
Lead (Pb), % 0
3.0 to 6.0
Nickel (Ni), % 0
0 to 2.0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 0
0 to 0.010
Sulfur (S), % 0
0 to 0.1
Tin (Sn), % 0
2.0 to 3.5
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
7.0 to 9.5