MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C14510 Copper

R56401 titanium belongs to the titanium alloys classification, while C14510 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C14510 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
120
Elongation at Break, % 9.1
9.1 to 9.6
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 560
180 to 190
Tensile Strength: Ultimate (UTS), MPa 940
300 to 320
Tensile Strength: Yield (Proof), MPa 850
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Maximum Temperature: Mechanical, °C 340
200
Melting Completion (Liquidus), °C 1610
1080
Melting Onset (Solidus), °C 1560
1050
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
360
Thermal Expansion, µm/m-K 9.6
17

Otherwise Unclassified Properties

Base Metal Price, % relative 36
33
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 38
2.6
Embodied Energy, MJ/kg 610
42
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
25 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
230 to 280
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 59
9.2 to 10
Strength to Weight: Bending, points 48
11 to 12
Thermal Diffusivity, mm2/s 2.9
100
Thermal Shock Resistance, points 67
11 to 12

Alloy Composition

Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
99.15 to 99.69
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Phosphorus (P), % 0
0.010 to 0.030
Tellurium (Te), % 0
0.3 to 0.7
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0