MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C40500 Penny Bronze

R56401 titanium belongs to the titanium alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
3.0 to 49
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 560
210 to 310
Tensile Strength: Ultimate (UTS), MPa 940
270 to 540
Tensile Strength: Yield (Proof), MPa 850
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 410
200
Maximum Temperature: Mechanical, °C 340
190
Melting Completion (Liquidus), °C 1610
1060
Melting Onset (Solidus), °C 1560
1020
Specific Heat Capacity, J/kg-K 560
380
Thermal Conductivity, W/m-K 7.1
160
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
42

Otherwise Unclassified Properties

Base Metal Price, % relative 36
30
Density, g/cm3 4.5
8.8
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
43
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
28 to 1200
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 35
18
Strength to Weight: Axial, points 59
8.5 to 17
Strength to Weight: Bending, points 48
10 to 17
Thermal Diffusivity, mm2/s 2.9
48
Thermal Shock Resistance, points 67
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
94 to 96
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5