MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C61900 Bronze

R56401 titanium belongs to the titanium alloys classification, while C61900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C61900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
21 to 32
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Shear Strength, MPa 560
370 to 410
Tensile Strength: Ultimate (UTS), MPa 940
570 to 650
Tensile Strength: Yield (Proof), MPa 850
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1610
1050
Melting Onset (Solidus), °C 1560
1040
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.1
79
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 36
28
Density, g/cm3 4.5
8.3
Embodied Carbon, kg CO2/kg material 38
3.1
Embodied Energy, MJ/kg 610
51
Embodied Water, L/kg 200
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
110 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
230 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 59
19 to 22
Strength to Weight: Bending, points 48
18 to 20
Thermal Diffusivity, mm2/s 2.9
22
Thermal Shock Resistance, points 67
20 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
8.5 to 10
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
83.6 to 88.5
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
3.0 to 4.5
Lead (Pb), % 0
0 to 0.020
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Tin (Sn), % 0
0 to 0.6
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.8
Residuals, % 0
0 to 0.5