MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C66700 Brass

R56401 titanium belongs to the titanium alloys classification, while C66700 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C66700 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
110
Elongation at Break, % 9.1
2.0 to 58
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
41
Shear Strength, MPa 560
250 to 530
Tensile Strength: Ultimate (UTS), MPa 940
340 to 690
Tensile Strength: Yield (Proof), MPa 850
100 to 640

Thermal Properties

Latent Heat of Fusion, J/g 410
180
Maximum Temperature: Mechanical, °C 340
140
Melting Completion (Liquidus), °C 1610
1090
Melting Onset (Solidus), °C 1560
1050
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
97
Thermal Expansion, µm/m-K 9.6
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
17
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
19

Otherwise Unclassified Properties

Base Metal Price, % relative 36
25
Density, g/cm3 4.5
8.2
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
45
Embodied Water, L/kg 200
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 83
13 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 3440
49 to 1900
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 59
11 to 23
Strength to Weight: Bending, points 48
13 to 21
Thermal Diffusivity, mm2/s 2.9
30
Thermal Shock Resistance, points 67
11 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
68.5 to 71.5
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0 to 0.1
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0
0.8 to 1.5
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
26.3 to 30.7
Residuals, % 0
0 to 0.5