MakeItFrom.com
Menu (ESC)

R56401 Titanium vs. C71000 Copper-nickel

R56401 titanium belongs to the titanium alloys classification, while C71000 copper-nickel belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is R56401 titanium and the bottom bar is C71000 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
49
Tensile Strength: Ultimate (UTS), MPa 940
320 to 560

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
240
Melting Completion (Liquidus), °C 1610
1200
Melting Onset (Solidus), °C 1560
1150
Specific Heat Capacity, J/kg-K 560
400
Thermal Conductivity, W/m-K 7.1
43
Thermal Expansion, µm/m-K 9.6
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
6.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 36
37
Density, g/cm3 4.5
8.9
Embodied Carbon, kg CO2/kg material 38
4.3
Embodied Energy, MJ/kg 610
63
Embodied Water, L/kg 200
290

Common Calculations

Stiffness to Weight: Axial, points 13
8.2
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 59
10 to 18
Strength to Weight: Bending, points 48
12 to 17
Thermal Diffusivity, mm2/s 2.9
12
Thermal Shock Resistance, points 67
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 5.5 to 6.5
0
Carbon (C), % 0 to 0.080
0
Copper (Cu), % 0
73.5 to 80.5
Hydrogen (H), % 0 to 0.012
0
Iron (Fe), % 0 to 0.25
0.5 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 0
19 to 23
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.13
0
Titanium (Ti), % 88.5 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5