MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. 2017A Aluminum

R58150 titanium belongs to the titanium alloys classification, while 2017A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is 2017A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
71
Elongation at Break, % 13
2.2 to 14
Fatigue Strength, MPa 330
92 to 130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 52
27
Shear Strength, MPa 470
120 to 270
Tensile Strength: Ultimate (UTS), MPa 770
200 to 460
Tensile Strength: Yield (Proof), MPa 550
110 to 290

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 320
220
Melting Completion (Liquidus), °C 1760
650
Melting Onset (Solidus), °C 1700
510
Specific Heat Capacity, J/kg-K 500
880
Thermal Expansion, µm/m-K 8.4
23

Otherwise Unclassified Properties

Base Metal Price, % relative 48
11
Density, g/cm3 5.4
3.0
Embodied Carbon, kg CO2/kg material 31
8.2
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 150
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
6.7 to 53
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
90 to 570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
46
Strength to Weight: Axial, points 40
19 to 42
Strength to Weight: Bending, points 35
26 to 44
Thermal Shock Resistance, points 48
8.9 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.3 to 95.5
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
0 to 0.7
Magnesium (Mg), % 0
0.4 to 1.0
Manganese (Mn), % 0
0.4 to 1.0
Molybdenum (Mo), % 14 to 16
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.2 to 0.8
Titanium (Ti), % 83.5 to 86
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15