MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. 5019 Aluminum

R58150 titanium belongs to the titanium alloys classification, while 5019 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is 5019 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
68
Elongation at Break, % 13
2.2 to 18
Fatigue Strength, MPa 330
100 to 160
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 52
26
Shear Strength, MPa 470
170 to 210
Tensile Strength: Ultimate (UTS), MPa 770
280 to 360
Tensile Strength: Yield (Proof), MPa 550
120 to 300

Thermal Properties

Latent Heat of Fusion, J/g 410
400
Maximum Temperature: Mechanical, °C 320
180
Melting Completion (Liquidus), °C 1760
640
Melting Onset (Solidus), °C 1700
540
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 8.4
24

Otherwise Unclassified Properties

Base Metal Price, % relative 48
9.5
Density, g/cm3 5.4
2.7
Embodied Carbon, kg CO2/kg material 31
9.0
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
7.6 to 40
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
110 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
51
Strength to Weight: Axial, points 40
29 to 38
Strength to Weight: Bending, points 35
35 to 42
Thermal Shock Resistance, points 48
13 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.5 to 95.3
Carbon (C), % 0 to 0.1
0
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0
0 to 0.1
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
0 to 0.5
Magnesium (Mg), % 0
4.5 to 5.6
Manganese (Mn), % 0
0.1 to 0.6
Molybdenum (Mo), % 14 to 16
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0 to 0.4
Titanium (Ti), % 83.5 to 86
0 to 0.2
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15