MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. 515.0 Aluminum

R58150 titanium belongs to the titanium alloys classification, while 515.0 aluminum belongs to the aluminum alloys. There are 23 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R58150 titanium and the bottom bar is 515.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
70
Elongation at Break, % 13
10
Fatigue Strength, MPa 330
130
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 52
26
Shear Strength, MPa 470
190
Tensile Strength: Ultimate (UTS), MPa 770
280

Thermal Properties

Latent Heat of Fusion, J/g 410
470
Maximum Temperature: Mechanical, °C 320
170
Melting Completion (Liquidus), °C 1760
620
Melting Onset (Solidus), °C 1700
620
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 8.4
23

Otherwise Unclassified Properties

Base Metal Price, % relative 48
9.5
Density, g/cm3 5.4
2.6
Embodied Carbon, kg CO2/kg material 31
8.4
Embodied Energy, MJ/kg 480
150
Embodied Water, L/kg 150
1120

Common Calculations

Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 32
52
Strength to Weight: Axial, points 40
30
Strength to Weight: Bending, points 35
36
Thermal Shock Resistance, points 48
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.6 to 96.6
Carbon (C), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.2
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
0 to 1.3
Magnesium (Mg), % 0
2.5 to 4.0
Manganese (Mn), % 0
0.4 to 0.6
Molybdenum (Mo), % 14 to 16
0
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Silicon (Si), % 0
0.5 to 10
Titanium (Ti), % 83.5 to 86
0
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15