MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. SAE-AISI A10 Steel

R58150 titanium belongs to the titanium alloys classification, while SAE-AISI A10 steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is SAE-AISI A10 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
190
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 52
72
Tensile Strength: Ultimate (UTS), MPa 770
810 to 2040

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Melting Completion (Liquidus), °C 1760
1440
Melting Onset (Solidus), °C 1700
1400
Specific Heat Capacity, J/kg-K 500
480
Thermal Expansion, µm/m-K 8.4
12

Otherwise Unclassified Properties

Base Metal Price, % relative 48
5.0
Density, g/cm3 5.4
7.8
Embodied Carbon, kg CO2/kg material 31
2.1
Embodied Energy, MJ/kg 480
27
Embodied Water, L/kg 150
56

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 32
25
Strength to Weight: Axial, points 40
29 to 73
Strength to Weight: Bending, points 35
25 to 46
Thermal Shock Resistance, points 48
27 to 68

Alloy Composition

Carbon (C), % 0 to 0.1
1.3 to 1.5
Copper (Cu), % 0
0 to 0.25
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
90.8 to 93.4
Manganese (Mn), % 0
1.6 to 2.1
Molybdenum (Mo), % 14 to 16
1.3 to 1.8
Nickel (Ni), % 0
1.6 to 2.1
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0
1.0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 83.5 to 86
0