MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. N08810 Stainless Steel

R58150 titanium belongs to the titanium alloys classification, while N08810 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is R58150 titanium and the bottom bar is N08810 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
200
Elongation at Break, % 13
33
Fatigue Strength, MPa 330
160
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 52
77
Shear Strength, MPa 470
340
Tensile Strength: Ultimate (UTS), MPa 770
520
Tensile Strength: Yield (Proof), MPa 550
200

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 320
1100
Melting Completion (Liquidus), °C 1760
1400
Melting Onset (Solidus), °C 1700
1350
Specific Heat Capacity, J/kg-K 500
480
Thermal Expansion, µm/m-K 8.4
14

Otherwise Unclassified Properties

Base Metal Price, % relative 48
30
Density, g/cm3 5.4
8.0
Embodied Carbon, kg CO2/kg material 31
5.3
Embodied Energy, MJ/kg 480
76
Embodied Water, L/kg 150
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
100
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 32
24
Strength to Weight: Axial, points 40
18
Strength to Weight: Bending, points 35
18
Thermal Shock Resistance, points 48
13

Alloy Composition

Aluminum (Al), % 0
0.15 to 0.6
Carbon (C), % 0 to 0.1
0.050 to 0.1
Chromium (Cr), % 0
19 to 23
Copper (Cu), % 0
0 to 0.75
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.1
39.5 to 50.7
Manganese (Mn), % 0
0 to 1.5
Molybdenum (Mo), % 14 to 16
0
Nickel (Ni), % 0
30 to 35
Nitrogen (N), % 0 to 0.050
0
Oxygen (O), % 0 to 0.2
0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 83.5 to 86
0.15 to 0.6