MakeItFrom.com
Menu (ESC)

R58150 Titanium vs. R05240 Alloy

R58150 titanium belongs to the titanium alloys classification, while R05240 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is R58150 titanium and the bottom bar is R05240 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 140
150
Elongation at Break, % 13
25
Poisson's Ratio 0.32
0.36
Shear Modulus, GPa 52
57
Tensile Strength: Ultimate (UTS), MPa 770
270
Tensile Strength: Yield (Proof), MPa 550
170

Thermal Properties

Latent Heat of Fusion, J/g 410
210
Specific Heat Capacity, J/kg-K 500
190
Thermal Expansion, µm/m-K 8.4
6.8

Otherwise Unclassified Properties

Density, g/cm3 5.4
14
Embodied Water, L/kg 150
460

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
59
Resilience: Unit (Modulus of Resilience), kJ/m3 1110
90
Stiffness to Weight: Axial, points 14
6.3
Stiffness to Weight: Bending, points 32
13
Strength to Weight: Axial, points 40
5.4
Strength to Weight: Bending, points 35
6.8
Thermal Shock Resistance, points 48
18

Alloy Composition

Carbon (C), % 0 to 0.1
0 to 0.010
Hydrogen (H), % 0 to 0.015
0 to 0.0015
Iron (Fe), % 0 to 0.1
0 to 0.010
Molybdenum (Mo), % 14 to 16
0 to 0.020
Nickel (Ni), % 0
0 to 0.010
Niobium (Nb), % 0
35 to 42
Nitrogen (N), % 0 to 0.050
0 to 0.010
Oxygen (O), % 0 to 0.2
0 to 0.020
Silicon (Si), % 0
0 to 0.0050
Tantalum (Ta), % 0
57.9 to 65
Titanium (Ti), % 83.5 to 86
0 to 0.010
Tungsten (W), % 0
0 to 0.050