MakeItFrom.com
Menu (ESC)

S20432 Stainless Steel vs. AISI 316Ti Stainless Steel

Both S20432 stainless steel and AISI 316Ti stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 90% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S20432 stainless steel and the bottom bar is AISI 316Ti stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
190
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
41
Fatigue Strength, MPa 210
200
Poisson's Ratio 0.28
0.28
Rockwell B Hardness 81
84
Shear Modulus, GPa 76
82
Shear Strength, MPa 400
400
Tensile Strength: Ultimate (UTS), MPa 580
580
Tensile Strength: Yield (Proof), MPa 230
230

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
470
Maximum Temperature: Mechanical, °C 900
940
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 13
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 2.7
4.0
Embodied Energy, MJ/kg 38
55
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
190
Resilience: Unit (Modulus of Resilience), kJ/m3 140
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
20
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
13

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 18
16 to 18
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 66.7 to 74
61.3 to 72
Manganese (Mn), % 3.0 to 5.0
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 4.0 to 6.0
10 to 14
Nitrogen (N), % 0.050 to 0.2
0 to 0.1
Phosphorus (P), % 0 to 0.045
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 0.75
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.7