MakeItFrom.com
Menu (ESC)

S20432 Stainless Steel vs. S21640 Stainless Steel

Both S20432 stainless steel and S21640 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a very high 96% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S20432 stainless steel and the bottom bar is S21640 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 45
46
Fatigue Strength, MPa 210
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 400
520
Tensile Strength: Ultimate (UTS), MPa 580
740
Tensile Strength: Yield (Proof), MPa 230
350

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 410
490
Maximum Temperature: Mechanical, °C 900
940
Melting Completion (Liquidus), °C 1410
1430
Melting Onset (Solidus), °C 1370
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
17
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 2.7
3.6
Embodied Energy, MJ/kg 38
51
Embodied Water, L/kg 140
150

Common Calculations

PREN (Pitting Resistance) 20
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
280
Resilience: Unit (Modulus of Resilience), kJ/m3 140
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
27
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 13
16

Alloy Composition

Carbon (C), % 0 to 0.080
0 to 0.080
Chromium (Cr), % 17 to 18
17.5 to 19.5
Copper (Cu), % 2.0 to 3.0
0
Iron (Fe), % 66.7 to 74
63 to 74.3
Manganese (Mn), % 3.0 to 5.0
3.5 to 6.5
Molybdenum (Mo), % 0
0.5 to 2.0
Nickel (Ni), % 4.0 to 6.0
4.0 to 6.5
Niobium (Nb), % 0
0.1 to 1.0
Nitrogen (N), % 0.050 to 0.2
0.080 to 0.3
Phosphorus (P), % 0 to 0.045
0 to 0.060
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030