MakeItFrom.com
Menu (ESC)

S20910 Stainless Steel vs. C14500 Copper

S20910 stainless steel belongs to the iron alloys classification, while C14500 copper belongs to the copper alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S20910 stainless steel and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 14 to 39
12 to 50
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
43
Shear Strength, MPa 500 to 570
150 to 190
Tensile Strength: Ultimate (UTS), MPa 780 to 940
220 to 330
Tensile Strength: Yield (Proof), MPa 430 to 810
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1080
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1050
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 13
360
Thermal Expansion, µm/m-K 16
17

Otherwise Unclassified Properties

Base Metal Price, % relative 22
33
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.8
2.6
Embodied Energy, MJ/kg 68
42
Embodied Water, L/kg 180
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1640
21 to 300
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 28 to 33
6.8 to 10
Strength to Weight: Bending, points 24 to 27
9.1 to 12
Thermal Diffusivity, mm2/s 3.6
100
Thermal Shock Resistance, points 17 to 21
8.0 to 12

Alloy Composition

Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
99.2 to 99.596
Iron (Fe), % 52.1 to 62.1
0
Manganese (Mn), % 4.0 to 6.0
0
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0.0040 to 0.012
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tellurium (Te), % 0
0.4 to 0.7
Vanadium (V), % 0.1 to 0.3
0