MakeItFrom.com
Menu (ESC)

S20910 Stainless Steel vs. C86700 Bronze

S20910 stainless steel belongs to the iron alloys classification, while C86700 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S20910 stainless steel and the bottom bar is C86700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 14 to 39
17
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 79
41
Tensile Strength: Ultimate (UTS), MPa 780 to 940
630
Tensile Strength: Yield (Proof), MPa 430 to 810
250

Thermal Properties

Latent Heat of Fusion, J/g 300
180
Maximum Temperature: Mechanical, °C 1080
130
Melting Completion (Liquidus), °C 1420
880
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 13
89
Thermal Expansion, µm/m-K 16
20

Otherwise Unclassified Properties

Base Metal Price, % relative 22
23
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 4.8
2.9
Embodied Energy, MJ/kg 68
49
Embodied Water, L/kg 180
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120 to 260
86
Resilience: Unit (Modulus of Resilience), kJ/m3 460 to 1640
290
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 28 to 33
22
Strength to Weight: Bending, points 24 to 27
21
Thermal Diffusivity, mm2/s 3.6
28
Thermal Shock Resistance, points 17 to 21
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
1.0 to 3.0
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 23.5
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 52.1 to 62.1
1.0 to 3.0
Lead (Pb), % 0
0.5 to 1.5
Manganese (Mn), % 4.0 to 6.0
1.0 to 3.5
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 11.5 to 13.5
0 to 1.0
Niobium (Nb), % 0.1 to 0.3
0
Nitrogen (N), % 0.2 to 0.4
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.75
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 1.5
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
30 to 38
Residuals, % 0
0 to 1.0