MakeItFrom.com
Menu (ESC)

S21600 Stainless Steel vs. 4032 Aluminum

S21600 stainless steel belongs to the iron alloys classification, while 4032 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21600 stainless steel and the bottom bar is 4032 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
120
Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 46
6.7
Fatigue Strength, MPa 360
110
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
28
Shear Strength, MPa 500
260
Tensile Strength: Ultimate (UTS), MPa 710
390
Tensile Strength: Yield (Proof), MPa 390
320

Thermal Properties

Latent Heat of Fusion, J/g 290
570
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1420
570
Melting Onset (Solidus), °C 1380
530
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
19

Otherwise Unclassified Properties

Base Metal Price, % relative 17
10
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.6
7.8
Embodied Energy, MJ/kg 50
140
Embodied Water, L/kg 160
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
25
Resilience: Unit (Modulus of Resilience), kJ/m3 370
700
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 25
41
Strength to Weight: Bending, points 23
45
Thermal Shock Resistance, points 15
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
81.1 to 87.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 22
0 to 0.1
Copper (Cu), % 0
0.5 to 1.3
Iron (Fe), % 57.6 to 67.8
0 to 1.0
Magnesium (Mg), % 0
0.8 to 1.3
Manganese (Mn), % 7.5 to 9.0
0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0.5 to 1.3
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
11 to 13.5
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15