MakeItFrom.com
Menu (ESC)

S21600 Stainless Steel vs. 5040 Aluminum

S21600 stainless steel belongs to the iron alloys classification, while 5040 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21600 stainless steel and the bottom bar is 5040 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
66 to 74
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 46
5.7 to 6.8
Fatigue Strength, MPa 360
100 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 500
140 to 150
Tensile Strength: Ultimate (UTS), MPa 710
240 to 260
Tensile Strength: Yield (Proof), MPa 390
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.6
8.3
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
14 to 15
Resilience: Unit (Modulus of Resilience), kJ/m3 370
260 to 380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
24 to 26
Strength to Weight: Bending, points 23
31 to 32
Thermal Shock Resistance, points 15
10 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
95.2 to 98
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 22
0.1 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 57.6 to 67.8
0 to 0.7
Magnesium (Mg), % 0
1.0 to 1.5
Manganese (Mn), % 7.5 to 9.0
0.9 to 1.4
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.3
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15