MakeItFrom.com
Menu (ESC)

S21600 Stainless Steel vs. 511.0 Aluminum

S21600 stainless steel belongs to the iron alloys classification, while 511.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21600 stainless steel and the bottom bar is 511.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
50
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 46
3.0
Fatigue Strength, MPa 360
55
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Shear Strength, MPa 500
120
Tensile Strength: Ultimate (UTS), MPa 710
150
Tensile Strength: Yield (Proof), MPa 390
83

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.8
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
3.7
Resilience: Unit (Modulus of Resilience), kJ/m3 370
51
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 25
15
Strength to Weight: Bending, points 23
23
Thermal Shock Resistance, points 15
6.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
93.3 to 96.2
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 22
0
Copper (Cu), % 0
0 to 0.15
Iron (Fe), % 57.6 to 67.8
0 to 0.5
Magnesium (Mg), % 0
3.5 to 4.5
Manganese (Mn), % 7.5 to 9.0
0 to 0.35
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0.3 to 0.7
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15