MakeItFrom.com
Menu (ESC)

S21600 Stainless Steel vs. 850.0 Aluminum

S21600 stainless steel belongs to the iron alloys classification, while 850.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21600 stainless steel and the bottom bar is 850.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
45
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 46
7.9
Fatigue Strength, MPa 360
59
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 500
100
Tensile Strength: Ultimate (UTS), MPa 710
140
Tensile Strength: Yield (Proof), MPa 390
76

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 990
190
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
370
Specific Heat Capacity, J/kg-K 480
850
Thermal Expansion, µm/m-K 17
23

Otherwise Unclassified Properties

Base Metal Price, % relative 17
14
Density, g/cm3 7.7
3.1
Embodied Carbon, kg CO2/kg material 3.6
8.5
Embodied Energy, MJ/kg 50
160
Embodied Water, L/kg 160
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
9.1
Resilience: Unit (Modulus of Resilience), kJ/m3 370
42
Stiffness to Weight: Axial, points 14
12
Stiffness to Weight: Bending, points 25
44
Strength to Weight: Axial, points 25
12
Strength to Weight: Bending, points 23
19
Thermal Shock Resistance, points 15
6.1

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
88.3 to 93.1
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 22
0
Copper (Cu), % 0
0.7 to 1.3
Iron (Fe), % 57.6 to 67.8
0 to 0.7
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 7.5 to 9.0
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0.7 to 1.3
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.7
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
5.5 to 7.0
Titanium (Ti), % 0
0 to 0.2
Residuals, % 0
0 to 0.3