MakeItFrom.com
Menu (ESC)

S21600 Stainless Steel vs. A357.0 Aluminum

S21600 stainless steel belongs to the iron alloys classification, while A357.0 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21600 stainless steel and the bottom bar is A357.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
100
Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 46
3.7
Fatigue Strength, MPa 360
100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 500
240
Tensile Strength: Ultimate (UTS), MPa 710
350
Tensile Strength: Yield (Proof), MPa 390
270

Thermal Properties

Latent Heat of Fusion, J/g 290
500
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1420
610
Melting Onset (Solidus), °C 1380
560
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
21

Otherwise Unclassified Properties

Base Metal Price, % relative 17
12
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.6
8.2
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 160
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
12
Resilience: Unit (Modulus of Resilience), kJ/m3 370
520
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 25
38
Strength to Weight: Bending, points 23
43
Thermal Shock Resistance, points 15
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
90.8 to 93
Beryllium (Be), % 0
0.040 to 0.070
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 22
0
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 57.6 to 67.8
0 to 0.2
Magnesium (Mg), % 0
0.4 to 0.7
Manganese (Mn), % 7.5 to 9.0
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
6.5 to 7.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.040 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15