MakeItFrom.com
Menu (ESC)

S21600 Stainless Steel vs. AWS E80C-B6

Both S21600 stainless steel and AWS E80C-B6 are iron alloys. They have 70% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is S21600 stainless steel and the bottom bar is AWS E80C-B6.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
74
Tensile Strength: Ultimate (UTS), MPa 710
630
Tensile Strength: Yield (Proof), MPa 390
530

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1380
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 17
13

Otherwise Unclassified Properties

Base Metal Price, % relative 17
4.7
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.6
1.8
Embodied Energy, MJ/kg 50
25
Embodied Water, L/kg 160
71

Common Calculations

PREN (Pitting Resistance) 34
7.1
Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
120
Resilience: Unit (Modulus of Resilience), kJ/m3 370
730
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
22
Strength to Weight: Bending, points 23
21
Thermal Shock Resistance, points 15
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0 to 0.1
Chromium (Cr), % 17.5 to 22
4.5 to 6.0
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 57.6 to 67.8
90.1 to 94.4
Manganese (Mn), % 7.5 to 9.0
0.4 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0.45 to 0.65
Nickel (Ni), % 5.0 to 7.0
0 to 0.6
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0 to 0.025
Silicon (Si), % 0 to 0.75
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5