MakeItFrom.com
Menu (ESC)

S21603 Stainless Steel vs. 5050 Aluminum

S21603 stainless steel belongs to the iron alloys classification, while 5050 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S21603 stainless steel and the bottom bar is 5050 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 200
36 to 68
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 45
1.7 to 22
Fatigue Strength, MPa 360
45 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
26
Shear Strength, MPa 490
91 to 140
Tensile Strength: Ultimate (UTS), MPa 690
140 to 250
Tensile Strength: Yield (Proof), MPa 390
50 to 210

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 990
180
Melting Completion (Liquidus), °C 1420
650
Melting Onset (Solidus), °C 1380
630
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 17
24

Otherwise Unclassified Properties

Base Metal Price, % relative 17
9.5
Density, g/cm3 7.7
2.7
Embodied Carbon, kg CO2/kg material 3.6
8.4
Embodied Energy, MJ/kg 50
150
Embodied Water, L/kg 160
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 270
4.1 to 24
Resilience: Unit (Modulus of Resilience), kJ/m3 380
18 to 330
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 25
15 to 26
Strength to Weight: Bending, points 22
22 to 33
Thermal Shock Resistance, points 15
6.3 to 11

Alloy Composition

Aluminum (Al), % 0
96.3 to 98.9
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 17.5 to 22
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 57.6 to 67.8
0 to 0.7
Magnesium (Mg), % 0
1.1 to 1.8
Manganese (Mn), % 7.5 to 9.0
0 to 0.1
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0.25 to 0.5
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 0.75
0 to 0.4
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15