MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. CC333G Bronze

S21640 stainless steel belongs to the iron alloys classification, while CC333G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
170
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 46
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 78
45
Tensile Strength: Ultimate (UTS), MPa 740
710
Tensile Strength: Yield (Proof), MPa 350
310

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 940
230
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
38
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 3.6
3.5
Embodied Energy, MJ/kg 51
56
Embodied Water, L/kg 150
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
75
Resilience: Unit (Modulus of Resilience), kJ/m3 300
410
Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
24
Strength to Weight: Bending, points 23
21
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 16
24

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 19.5
0 to 0.050
Copper (Cu), % 0
76 to 83
Iron (Fe), % 63 to 74.3
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 3.5 to 6.5
0 to 3.0
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
3.7 to 6.0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.5