MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. CC334G Bronze

S21640 stainless steel belongs to the iron alloys classification, while CC334G bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is CC334G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 230
210
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 46
5.6
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
45
Tensile Strength: Ultimate (UTS), MPa 740
810
Tensile Strength: Yield (Proof), MPa 350
410

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 940
240
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
41
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.2
Embodied Carbon, kg CO2/kg material 3.6
3.6
Embodied Energy, MJ/kg 51
59
Embodied Water, L/kg 150
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
38
Resilience: Unit (Modulus of Resilience), kJ/m3 300
710
Stiffness to Weight: Axial, points 14
8.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 27
28
Strength to Weight: Bending, points 23
24
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 16
28

Alloy Composition

Aluminum (Al), % 0
10 to 12
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
72 to 84.5
Iron (Fe), % 63 to 74.3
3.0 to 7.0
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 3.5 to 6.5
0 to 2.5
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
4.0 to 7.5
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.5