MakeItFrom.com
Menu (ESC)

S21640 Stainless Steel vs. C42200 Brass

S21640 stainless steel belongs to the iron alloys classification, while C42200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S21640 stainless steel and the bottom bar is C42200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 46
2.0 to 46
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 520
210 to 350
Tensile Strength: Ultimate (UTS), MPa 740
300 to 610
Tensile Strength: Yield (Proof), MPa 350
100 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 940
170
Melting Completion (Liquidus), °C 1430
1040
Melting Onset (Solidus), °C 1380
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.4
31
Electrical Conductivity: Equal Weight (Specific), % IACS 2.8
32

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.6
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 280
12 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 300
49 to 1460
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 27
9.5 to 19
Strength to Weight: Bending, points 23
11 to 18
Thermal Diffusivity, mm2/s 4.0
39
Thermal Shock Resistance, points 16
10 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 17.5 to 19.5
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 63 to 74.3
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 3.5 to 6.5
0
Molybdenum (Mo), % 0.5 to 2.0
0
Nickel (Ni), % 4.0 to 6.5
0
Niobium (Nb), % 0.1 to 1.0
0
Nitrogen (N), % 0.080 to 0.3
0
Phosphorus (P), % 0 to 0.060
0 to 0.35
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.8 to 1.4
Zinc (Zn), % 0
8.7 to 13.2
Residuals, % 0
0 to 0.5