MakeItFrom.com
Menu (ESC)

S28200 Stainless Steel vs. 5454 Aluminum

S28200 stainless steel belongs to the iron alloys classification, while 5454 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S28200 stainless steel and the bottom bar is 5454 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
61 to 93
Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 45
2.3 to 18
Fatigue Strength, MPa 430
83 to 160
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Shear Strength, MPa 610
140 to 200
Tensile Strength: Ultimate (UTS), MPa 870
230 to 350
Tensile Strength: Yield (Proof), MPa 460
97 to 290

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 900
190
Melting Completion (Liquidus), °C 1380
650
Melting Onset (Solidus), °C 1330
600
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 18
24

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.6
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
6.3 to 34
Resilience: Unit (Modulus of Resilience), kJ/m3 540
68 to 590
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
50
Strength to Weight: Axial, points 32
23 to 36
Strength to Weight: Bending, points 27
30 to 41
Thermal Shock Resistance, points 17
10 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.5 to 97.1
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0.050 to 0.2
Copper (Cu), % 0.75 to 1.3
0 to 0.1
Iron (Fe), % 57.7 to 64.1
0 to 0.4
Magnesium (Mg), % 0
2.4 to 3.0
Manganese (Mn), % 17 to 19
0.5 to 1.0
Molybdenum (Mo), % 0.75 to 1.3
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15