MakeItFrom.com
Menu (ESC)

S28200 Stainless Steel vs. EN AC-51100 Aluminum

S28200 stainless steel belongs to the iron alloys classification, while EN AC-51100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S28200 stainless steel and the bottom bar is EN AC-51100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
57
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 45
4.5
Fatigue Strength, MPa 430
58
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 870
160
Tensile Strength: Yield (Proof), MPa 460
80

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 900
170
Melting Completion (Liquidus), °C 1380
640
Melting Onset (Solidus), °C 1330
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Expansion, µm/m-K 18
23

Otherwise Unclassified Properties

Base Metal Price, % relative 12
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 2.8
8.7
Embodied Energy, MJ/kg 41
150
Embodied Water, L/kg 160
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 330
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 540
47
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
51
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 27
25
Thermal Shock Resistance, points 17
7.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.5 to 97.5
Carbon (C), % 0 to 0.15
0
Chromium (Cr), % 17 to 19
0
Copper (Cu), % 0.75 to 1.3
0 to 0.050
Iron (Fe), % 57.7 to 64.1
0 to 0.55
Magnesium (Mg), % 0
2.5 to 3.5
Manganese (Mn), % 17 to 19
0 to 0.45
Molybdenum (Mo), % 0.75 to 1.3
0
Nitrogen (N), % 0.4 to 0.6
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 0 to 1.0
0 to 0.55
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15