MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. SAE-AISI 8655 Steel

Both S30415 stainless steel and SAE-AISI 8655 steel are iron alloys. Both are furnished in the annealed condition. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is SAE-AISI 8655 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
23
Fatigue Strength, MPa 300
290
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Shear Strength, MPa 470
390
Tensile Strength: Ultimate (UTS), MPa 670
620
Tensile Strength: Yield (Proof), MPa 330
410

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 940
410
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 21
39
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 15
2.6
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.1
1.5
Embodied Energy, MJ/kg 43
20
Embodied Water, L/kg 140
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
130
Resilience: Unit (Modulus of Resilience), kJ/m3 280
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 22
21
Thermal Diffusivity, mm2/s 5.6
10
Thermal Shock Resistance, points 15
18

Alloy Composition

Carbon (C), % 0.040 to 0.060
0.51 to 0.59
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0.4 to 0.6
Iron (Fe), % 67.8 to 71.8
96.4 to 97.6
Manganese (Mn), % 0 to 0.8
0.75 to 1.0
Molybdenum (Mo), % 0
0.15 to 0.25
Nickel (Ni), % 9.0 to 10
0.4 to 0.7
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 1.0 to 2.0
0.15 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.040