MakeItFrom.com
Menu (ESC)

S30415 Stainless Steel vs. C19500 Copper

S30415 stainless steel belongs to the iron alloys classification, while C19500 copper belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S30415 stainless steel and the bottom bar is C19500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 45
2.3 to 38
Poisson's Ratio 0.28
0.34
Rockwell B Hardness 84
71 to 86
Shear Modulus, GPa 77
44
Shear Strength, MPa 470
260 to 360
Tensile Strength: Ultimate (UTS), MPa 670
380 to 640
Tensile Strength: Yield (Proof), MPa 330
120 to 600

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 940
200
Melting Completion (Liquidus), °C 1410
1090
Melting Onset (Solidus), °C 1370
1090
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 21
200
Thermal Expansion, µm/m-K 17
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
50 to 56
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
50 to 57

Otherwise Unclassified Properties

Base Metal Price, % relative 15
31
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.1
2.7
Embodied Energy, MJ/kg 43
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 250
14 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 280
59 to 1530
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 24
12 to 20
Strength to Weight: Bending, points 22
13 to 18
Thermal Diffusivity, mm2/s 5.6
58
Thermal Shock Resistance, points 15
13 to 23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0.040 to 0.060
0
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 18 to 19
0
Cobalt (Co), % 0
0.3 to 1.3
Copper (Cu), % 0
94.9 to 98.6
Iron (Fe), % 67.8 to 71.8
1.0 to 2.0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 9.0 to 10
0
Nitrogen (N), % 0.12 to 0.18
0
Phosphorus (P), % 0 to 0.045
0.010 to 0.35
Silicon (Si), % 1.0 to 2.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.1 to 1.0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2