MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. ACI-ASTM CA28MWV Steel

Both S30600 stainless steel and ACI-ASTM CA28MWV steel are iron alloys. They have 76% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
330
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 45
11
Fatigue Strength, MPa 250
470
Poisson's Ratio 0.28
0.28
Reduction in Area, % 56
27
Shear Modulus, GPa 76
76
Tensile Strength: Ultimate (UTS), MPa 610
1080
Tensile Strength: Yield (Proof), MPa 270
870

Thermal Properties

Latent Heat of Fusion, J/g 350
270
Maximum Temperature: Corrosion, °C 410
380
Maximum Temperature: Mechanical, °C 950
740
Melting Completion (Liquidus), °C 1380
1470
Melting Onset (Solidus), °C 1330
1430
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
25
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 3.6
3.1
Embodied Energy, MJ/kg 51
44
Embodied Water, L/kg 150
100

Common Calculations

PREN (Pitting Resistance) 18
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190
1920
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
38
Strength to Weight: Bending, points 21
30
Thermal Diffusivity, mm2/s 3.7
6.6
Thermal Shock Resistance, points 14
40

Alloy Composition

Carbon (C), % 0 to 0.018
0.2 to 0.28
Chromium (Cr), % 17 to 18.5
11 to 12.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 58.9 to 65.3
81.4 to 85.8
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.2
0.9 to 1.3
Nickel (Ni), % 14 to 15.5
0.5 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 3.7 to 4.3
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 0
0.2 to 0.3