MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. ASTM A369 Grade FP92

Both S30600 stainless steel and ASTM A369 grade FP92 are iron alloys. They have 72% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is ASTM A369 grade FP92.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 45
19
Fatigue Strength, MPa 250
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 430
440
Tensile Strength: Ultimate (UTS), MPa 610
710
Tensile Strength: Yield (Proof), MPa 270
490

Thermal Properties

Latent Heat of Fusion, J/g 350
260
Maximum Temperature: Mechanical, °C 950
590
Melting Completion (Liquidus), °C 1380
1490
Melting Onset (Solidus), °C 1330
1450
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 14
26
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
9.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
10

Otherwise Unclassified Properties

Base Metal Price, % relative 19
11
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 51
40
Embodied Water, L/kg 150
89

Common Calculations

PREN (Pitting Resistance) 18
14
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190
620
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 22
25
Strength to Weight: Bending, points 21
22
Thermal Diffusivity, mm2/s 3.7
6.9
Thermal Shock Resistance, points 14
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0.0010 to 0.0060
Carbon (C), % 0 to 0.018
0.070 to 0.13
Chromium (Cr), % 17 to 18.5
8.5 to 9.5
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 58.9 to 65.3
85.8 to 89.1
Manganese (Mn), % 0 to 2.0
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.2
0.3 to 0.6
Nickel (Ni), % 14 to 15.5
0 to 0.4
Niobium (Nb), % 0
0.040 to 0.090
Nitrogen (N), % 0
0.030 to 0.070
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 3.7 to 4.3
0 to 0.5
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.0
Vanadium (V), % 0
0.15 to 0.25
Zirconium (Zr), % 0
0 to 0.010