MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. EN 1.4523 Stainless Steel

Both S30600 stainless steel and EN 1.4523 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is EN 1.4523 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 45
17
Fatigue Strength, MPa 250
190
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
78
Shear Strength, MPa 430
320
Tensile Strength: Ultimate (UTS), MPa 610
520
Tensile Strength: Yield (Proof), MPa 270
320

Thermal Properties

Latent Heat of Fusion, J/g 350
290
Maximum Temperature: Corrosion, °C 410
500
Maximum Temperature: Mechanical, °C 950
920
Melting Completion (Liquidus), °C 1380
1450
Melting Onset (Solidus), °C 1330
1410
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 14
22
Thermal Expansion, µm/m-K 16
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
12
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 3.6
2.9
Embodied Energy, MJ/kg 51
40
Embodied Water, L/kg 150
130

Common Calculations

PREN (Pitting Resistance) 18
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
77
Resilience: Unit (Modulus of Resilience), kJ/m3 190
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
18
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 3.7
5.8
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.040
Carbon (C), % 0 to 0.018
0 to 0.030
Chromium (Cr), % 17 to 18.5
17.5 to 19
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 58.9 to 65.3
75.7 to 80.2
Manganese (Mn), % 0 to 2.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.2
2.0 to 2.5
Nickel (Ni), % 14 to 15.5
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 3.7 to 4.3
0 to 1.0
Sulfur (S), % 0 to 0.020
0.15 to 0.35
Titanium (Ti), % 0
0.15 to 0.8