MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. Grade Ti-Pd7B Titanium

S30600 stainless steel belongs to the iron alloys classification, while grade Ti-Pd7B titanium belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is grade Ti-Pd7B titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
180
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 45
17
Fatigue Strength, MPa 250
200
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 610
390
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 350
420
Maximum Temperature: Mechanical, °C 950
320
Melting Completion (Liquidus), °C 1380
1660
Melting Onset (Solidus), °C 1330
1610
Specific Heat Capacity, J/kg-K 490
540
Thermal Conductivity, W/m-K 14
22
Thermal Expansion, µm/m-K 16
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
3.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.1

Otherwise Unclassified Properties

Density, g/cm3 7.6
4.5
Embodied Carbon, kg CO2/kg material 3.6
49
Embodied Energy, MJ/kg 51
840
Embodied Water, L/kg 150
520

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
62
Resilience: Unit (Modulus of Resilience), kJ/m3 190
440
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 22
24
Strength to Weight: Bending, points 21
26
Thermal Diffusivity, mm2/s 3.7
8.9
Thermal Shock Resistance, points 14
30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.018
0 to 0.1
Chromium (Cr), % 17 to 18.5
0
Copper (Cu), % 0 to 0.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 58.9 to 65.3
0 to 0.2
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0 to 0.050
Oxygen (O), % 0
0 to 0.4
Palladium (Pd), % 0
0.12 to 0.3
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0
98.8 to 99.9
Residuals, % 0
0 to 0.4