MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. C48600 Brass

S30600 stainless steel belongs to the iron alloys classification, while C48600 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is C48600 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 45
20 to 25
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
39
Shear Strength, MPa 430
180 to 230
Tensile Strength: Ultimate (UTS), MPa 610
280 to 360
Tensile Strength: Yield (Proof), MPa 270
110 to 170

Thermal Properties

Latent Heat of Fusion, J/g 350
170
Maximum Temperature: Mechanical, °C 950
120
Melting Completion (Liquidus), °C 1380
900
Melting Onset (Solidus), °C 1330
890
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
25
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
28

Otherwise Unclassified Properties

Base Metal Price, % relative 19
24
Density, g/cm3 7.6
8.1
Embodied Carbon, kg CO2/kg material 3.6
2.8
Embodied Energy, MJ/kg 51
47
Embodied Water, L/kg 150
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
55 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 190
61 to 140
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 22
9.5 to 12
Strength to Weight: Bending, points 21
12 to 14
Thermal Diffusivity, mm2/s 3.7
36
Thermal Shock Resistance, points 14
9.3 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Arsenic (As), % 0
0.020 to 0.25
Carbon (C), % 0 to 0.018
0
Chromium (Cr), % 17 to 18.5
0
Copper (Cu), % 0 to 0.5
59 to 62
Iron (Fe), % 58.9 to 65.3
0
Lead (Pb), % 0
1.0 to 2.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.3 to 1.5
Zinc (Zn), % 0
33.4 to 39.7
Residuals, % 0
0 to 0.4