MakeItFrom.com
Menu (ESC)

S30600 Stainless Steel vs. C85500 Brass

S30600 stainless steel belongs to the iron alloys classification, while C85500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S30600 stainless steel and the bottom bar is C85500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
85
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 45
40
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Tensile Strength: Ultimate (UTS), MPa 610
410
Tensile Strength: Yield (Proof), MPa 270
160

Thermal Properties

Latent Heat of Fusion, J/g 350
170
Maximum Temperature: Mechanical, °C 950
120
Melting Completion (Liquidus), °C 1380
900
Melting Onset (Solidus), °C 1330
890
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 14
120
Thermal Expansion, µm/m-K 16
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 19
23
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 51
46
Embodied Water, L/kg 150
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
130
Resilience: Unit (Modulus of Resilience), kJ/m3 190
120
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 22
14
Strength to Weight: Bending, points 21
15
Thermal Diffusivity, mm2/s 3.7
38
Thermal Shock Resistance, points 14
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.018
0
Chromium (Cr), % 17 to 18.5
0
Copper (Cu), % 0 to 0.5
59 to 63
Iron (Fe), % 58.9 to 65.3
0 to 0.2
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 14 to 15.5
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 3.7 to 4.3
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
35.1 to 41
Residuals, % 0
0 to 0.9