MakeItFrom.com
Menu (ESC)

S30601 Stainless Steel vs. 5754 Aluminum

S30601 stainless steel belongs to the iron alloys classification, while 5754 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30601 stainless steel and the bottom bar is 5754 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
52 to 88
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 37
2.0 to 19
Fatigue Strength, MPa 250
66 to 140
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 450
120 to 190
Tensile Strength: Ultimate (UTS), MPa 660
200 to 330
Tensile Strength: Yield (Proof), MPa 300
80 to 280

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 950
190
Melting Completion (Liquidus), °C 1360
650
Melting Onset (Solidus), °C 1310
600
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
24

Otherwise Unclassified Properties

Base Metal Price, % relative 20
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 3.9
8.7
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 150
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 200
6.1 to 32
Resilience: Unit (Modulus of Resilience), kJ/m3 230
47 to 580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 24
21 to 34
Strength to Weight: Bending, points 22
28 to 39
Thermal Shock Resistance, points 16
8.9 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94.2 to 97.4
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 17 to 18
0 to 0.3
Copper (Cu), % 0 to 0.35
0 to 0.1
Iron (Fe), % 56.9 to 60.5
0 to 0.4
Magnesium (Mg), % 0
2.6 to 3.6
Manganese (Mn), % 0.5 to 0.8
0 to 0.5
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 17 to 18
0
Nitrogen (N), % 0 to 0.050
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 5.0 to 5.6
0 to 0.4
Sulfur (S), % 0 to 0.013
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15