MakeItFrom.com
Menu (ESC)

S30615 Stainless Steel vs. EN AC-71100 Aluminum

S30615 stainless steel belongs to the iron alloys classification, while EN AC-71100 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S30615 stainless steel and the bottom bar is EN AC-71100 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 39
1.1
Fatigue Strength, MPa 270
150
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 690
260
Tensile Strength: Yield (Proof), MPa 310
230

Thermal Properties

Latent Heat of Fusion, J/g 340
490
Maximum Temperature: Mechanical, °C 960
170
Melting Completion (Liquidus), °C 1370
580
Melting Onset (Solidus), °C 1320
520
Specific Heat Capacity, J/kg-K 500
860
Thermal Expansion, µm/m-K 16
22

Otherwise Unclassified Properties

Base Metal Price, % relative 19
9.5
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 3.7
7.4
Embodied Energy, MJ/kg 53
140
Embodied Water, L/kg 170
1010

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 220
2.8
Resilience: Unit (Modulus of Resilience), kJ/m3 260
360
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 25
25
Strength to Weight: Bending, points 23
31
Thermal Shock Resistance, points 16
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0.8 to 1.5
78.7 to 83.3
Carbon (C), % 0.16 to 0.24
0
Chromium (Cr), % 17 to 19.5
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 56.7 to 65.3
0 to 0.3
Magnesium (Mg), % 0
0.2 to 0.5
Manganese (Mn), % 0 to 2.0
0 to 0.15
Nickel (Ni), % 13.5 to 16
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 3.2 to 4.0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
9.0 to 10.5
Residuals, % 0
0 to 0.15