MakeItFrom.com
Menu (ESC)

S30815 Stainless Steel vs. ASTM A387 Grade 91 Class 2

Both S30815 stainless steel and ASTM A387 grade 91 class 2 are iron alloys. They have 75% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S30815 stainless steel and the bottom bar is ASTM A387 grade 91 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
200
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 45
20
Fatigue Strength, MPa 320
330
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
75
Shear Strength, MPa 480
420
Tensile Strength: Ultimate (UTS), MPa 680
670
Tensile Strength: Yield (Proof), MPa 350
470

Thermal Properties

Latent Heat of Fusion, J/g 310
270
Maximum Temperature: Mechanical, °C 1020
600
Melting Completion (Liquidus), °C 1400
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 15
26
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.0
8.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
10

Otherwise Unclassified Properties

Base Metal Price, % relative 17
7.0
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 3.3
2.6
Embodied Energy, MJ/kg 47
37
Embodied Water, L/kg 160
88

Common Calculations

PREN (Pitting Resistance) 24
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
120
Resilience: Unit (Modulus of Resilience), kJ/m3 310
580
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 25
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 4.0
6.9
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Carbon (C), % 0.050 to 0.1
0.080 to 0.12
Cerium (Ce), % 0.030 to 0.080
0
Chromium (Cr), % 20 to 22
8.0 to 9.5
Iron (Fe), % 62.8 to 68.4
87.3 to 90.3
Manganese (Mn), % 0 to 0.8
0.3 to 0.6
Molybdenum (Mo), % 0
0.85 to 1.1
Nickel (Ni), % 10 to 12
0 to 0.4
Niobium (Nb), % 0
0.060 to 0.1
Nitrogen (N), % 0.14 to 0.2
0.030 to 0.070
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 1.4 to 2.0
0.2 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Vanadium (V), % 0
0.18 to 0.25
Zirconium (Zr), % 0
0 to 0.010