MakeItFrom.com
Menu (ESC)

S31060 Stainless Steel vs. Nickel 718

S31060 stainless steel belongs to the iron alloys classification, while nickel 718 belongs to the nickel alloys. They have 49% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S31060 stainless steel and the bottom bar is nickel 718.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
12 to 50
Fatigue Strength, MPa 290
460 to 760
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
75
Shear Strength, MPa 480
660 to 950
Tensile Strength: Ultimate (UTS), MPa 680
930 to 1530
Tensile Strength: Yield (Proof), MPa 310
510 to 1330

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Maximum Temperature: Mechanical, °C 1080
980
Melting Completion (Liquidus), °C 1420
1340
Melting Onset (Solidus), °C 1370
1260
Specific Heat Capacity, J/kg-K 480
450
Thermal Conductivity, W/m-K 15
11
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
1.5

Otherwise Unclassified Properties

Base Metal Price, % relative 18
75
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.4
13
Embodied Energy, MJ/kg 48
190
Embodied Water, L/kg 170
250

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
140 to 390
Resilience: Unit (Modulus of Resilience), kJ/m3 250
660 to 4560
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 24
31 to 51
Strength to Weight: Bending, points 22
25 to 35
Thermal Diffusivity, mm2/s 4.0
3.0
Thermal Shock Resistance, points 15
27 to 44

Alloy Composition

Aluminum (Al), % 0
0.2 to 0.8
Boron (B), % 0.0010 to 0.010
0 to 0.0060
Carbon (C), % 0.050 to 0.1
0 to 0.080
Cerium (Ce), % 0 to 0.070
0
Chromium (Cr), % 22 to 24
17 to 21
Cobalt (Co), % 0
0 to 1.0
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 61.4 to 67.8
11.1 to 24.6
Lanthanum (La), % 0 to 0.070
0
Manganese (Mn), % 0 to 1.0
0 to 0.35
Molybdenum (Mo), % 0
2.8 to 3.3
Nickel (Ni), % 10 to 12.5
50 to 55
Niobium (Nb), % 0
4.8 to 5.5
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 0.5
0 to 0.35
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0.65 to 1.2