MakeItFrom.com
Menu (ESC)

S31060 Stainless Steel vs. S66286 Stainless Steel

Both S31060 stainless steel and S66286 stainless steel are iron alloys. They have 81% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S31060 stainless steel and the bottom bar is S66286 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 46
17 to 40
Fatigue Strength, MPa 290
240 to 410
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 78
75
Shear Strength, MPa 480
420 to 630
Tensile Strength: Ultimate (UTS), MPa 680
620 to 1020
Tensile Strength: Yield (Proof), MPa 310
280 to 670

Thermal Properties

Latent Heat of Fusion, J/g 290
300
Maximum Temperature: Corrosion, °C 440
780
Maximum Temperature: Mechanical, °C 1080
920
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1370
1370
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 18
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 3.4
6.0
Embodied Energy, MJ/kg 48
87
Embodied Water, L/kg 170
170

Common Calculations

PREN (Pitting Resistance) 26
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 260
150 to 200
Resilience: Unit (Modulus of Resilience), kJ/m3 250
190 to 1150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 24
22 to 36
Strength to Weight: Bending, points 22
20 to 28
Thermal Diffusivity, mm2/s 4.0
4.0
Thermal Shock Resistance, points 15
13 to 22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0.0010 to 0.010
0.0010 to 0.010
Carbon (C), % 0.050 to 0.1
0 to 0.080
Cerium (Ce), % 0 to 0.070
0
Chromium (Cr), % 22 to 24
13.5 to 16
Iron (Fe), % 61.4 to 67.8
49.1 to 59.5
Lanthanum (La), % 0 to 0.070
0
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 0
1.0 to 1.5
Nickel (Ni), % 10 to 12.5
24 to 27
Nitrogen (N), % 0.18 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
1.9 to 2.4
Vanadium (V), % 0
0.1 to 0.5