MakeItFrom.com
Menu (ESC)

S31260 Stainless Steel vs. EN 1.4116 Stainless Steel

Both S31260 stainless steel and EN 1.4116 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 80% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31260 stainless steel and the bottom bar is EN 1.4116 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
240
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
14
Fatigue Strength, MPa 370
240
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 500
450
Tensile Strength: Ultimate (UTS), MPa 790
750
Tensile Strength: Yield (Proof), MPa 540
430

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
390
Maximum Temperature: Mechanical, °C 1100
800
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 20
8.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.5
Embodied Energy, MJ/kg 53
36
Embodied Water, L/kg 180
110

Common Calculations

PREN (Pitting Resistance) 39
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
87
Resilience: Unit (Modulus of Resilience), kJ/m3 720
470
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
27
Strength to Weight: Bending, points 24
24
Thermal Diffusivity, mm2/s 4.3
8.1
Thermal Shock Resistance, points 22
26

Alloy Composition

Carbon (C), % 0 to 0.030
0.45 to 0.55
Chromium (Cr), % 24 to 26
14 to 15
Copper (Cu), % 0.2 to 0.8
0
Iron (Fe), % 59.6 to 67.6
81.3 to 85
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.5
0.5 to 0.8
Nickel (Ni), % 5.5 to 7.5
0
Nitrogen (N), % 0.1 to 0.3
0 to 0.15
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Tungsten (W), % 0.1 to 0.5
0
Vanadium (V), % 0
0.1 to 0.2