MakeItFrom.com
Menu (ESC)

S31260 Stainless Steel vs. S30435 Stainless Steel

Both S31260 stainless steel and S30435 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31260 stainless steel and the bottom bar is S30435 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
160
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
51
Fatigue Strength, MPa 370
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
76
Shear Strength, MPa 500
370
Tensile Strength: Ultimate (UTS), MPa 790
510
Tensile Strength: Yield (Proof), MPa 540
170

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
410
Maximum Temperature: Mechanical, °C 1100
900
Melting Completion (Liquidus), °C 1450
1420
Melting Onset (Solidus), °C 1400
1380
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
16
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 20
14
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 3.9
2.9
Embodied Energy, MJ/kg 53
40
Embodied Water, L/kg 180
140

Common Calculations

PREN (Pitting Resistance) 39
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
210
Resilience: Unit (Modulus of Resilience), kJ/m3 720
77
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
18
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.3
4.2
Thermal Shock Resistance, points 22
12

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.080
Chromium (Cr), % 24 to 26
16 to 18
Copper (Cu), % 0.2 to 0.8
1.5 to 3.0
Iron (Fe), % 59.6 to 67.6
66.9 to 75.5
Manganese (Mn), % 0 to 1.0
0 to 2.0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 5.5 to 7.5
7.0 to 9.0
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Tungsten (W), % 0.1 to 0.5
0