MakeItFrom.com
Menu (ESC)

S31260 Stainless Steel vs. S46800 Stainless Steel

Both S31260 stainless steel and S46800 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 84% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S31260 stainless steel and the bottom bar is S46800 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
180
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 23
25
Fatigue Strength, MPa 370
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 500
300
Tensile Strength: Ultimate (UTS), MPa 790
470
Tensile Strength: Yield (Proof), MPa 540
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
500
Maximum Temperature: Mechanical, °C 1100
920
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
23
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 20
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.9
2.6
Embodied Energy, MJ/kg 53
37
Embodied Water, L/kg 180
130

Common Calculations

PREN (Pitting Resistance) 39
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
98
Resilience: Unit (Modulus of Resilience), kJ/m3 720
130
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
17
Strength to Weight: Bending, points 24
18
Thermal Diffusivity, mm2/s 4.3
6.1
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 24 to 26
18 to 20
Copper (Cu), % 0.2 to 0.8
0
Iron (Fe), % 59.6 to 67.6
76.5 to 81.8
Manganese (Mn), % 0 to 1.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.5
0
Nickel (Ni), % 5.5 to 7.5
0 to 0.5
Niobium (Nb), % 0
0.1 to 0.6
Nitrogen (N), % 0.1 to 0.3
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.75
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0.070 to 0.3
Tungsten (W), % 0.1 to 0.5
0