MakeItFrom.com
Menu (ESC)

S32101 Stainless Steel vs. EN 1.1158 Steel

Both S32101 stainless steel and EN 1.1158 steel are iron alloys. They have 72% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S32101 stainless steel and the bottom bar is EN 1.1158 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
140 to 150
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
23 to 24
Fatigue Strength, MPa 400
170 to 220
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
73
Shear Strength, MPa 490
300 to 320
Tensile Strength: Ultimate (UTS), MPa 740
470 to 500
Tensile Strength: Yield (Proof), MPa 500
240 to 310

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 12
2.1
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.6
1.4
Embodied Energy, MJ/kg 38
19
Embodied Water, L/kg 150
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 230
89 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 640
150 to 250
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 27
17 to 18
Strength to Weight: Bending, points 24
17 to 18
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 20
15 to 16

Alloy Composition

Carbon (C), % 0 to 0.040
0.22 to 0.29
Chromium (Cr), % 21 to 22
0 to 0.4
Copper (Cu), % 0.1 to 0.8
0
Iron (Fe), % 67.3 to 73.3
97.6 to 99.38
Manganese (Mn), % 4.0 to 6.0
0.4 to 0.7
Molybdenum (Mo), % 0.1 to 0.8
0 to 0.1
Nickel (Ni), % 1.4 to 1.7
0 to 0.4
Nitrogen (N), % 0.2 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.035