MakeItFrom.com
Menu (ESC)

S32205 Stainless Steel vs. AISI 439 Stainless Steel

Both S32205 stainless steel and AISI 439 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 86% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32205 stainless steel and the bottom bar is AISI 439 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
23
Fatigue Strength, MPa 370
170
Poisson's Ratio 0.27
0.28
Reduction in Area, % 51
51
Shear Modulus, GPa 80
77
Shear Strength, MPa 480
310
Tensile Strength: Ultimate (UTS), MPa 740
490
Tensile Strength: Yield (Proof), MPa 510
250

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 440
530
Maximum Temperature: Mechanical, °C 1070
890
Melting Completion (Liquidus), °C 1450
1510
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
25
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 18
9.0
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.7
2.3
Embodied Energy, MJ/kg 50
34
Embodied Water, L/kg 160
120

Common Calculations

PREN (Pitting Resistance) 36
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
95
Resilience: Unit (Modulus of Resilience), kJ/m3 630
160
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 26
18
Strength to Weight: Bending, points 23
18
Thermal Diffusivity, mm2/s 4.0
6.7
Thermal Shock Resistance, points 20
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 22 to 23
17 to 19
Iron (Fe), % 63.7 to 70.4
77.1 to 82.8
Manganese (Mn), % 0 to 2.0
0 to 1.0
Molybdenum (Mo), % 3.0 to 3.5
0
Nickel (Ni), % 4.5 to 6.5
0 to 0.5
Nitrogen (N), % 0.14 to 0.2
0 to 0.030
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.2 to 1.1