MakeItFrom.com
Menu (ESC)

S32304 Stainless Steel vs. EN 1.4982 Stainless Steel

Both S32304 stainless steel and EN 1.4982 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S32304 stainless steel and the bottom bar is EN 1.4982 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
230
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
28
Fatigue Strength, MPa 330
420
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Shear Strength, MPa 440
490
Tensile Strength: Ultimate (UTS), MPa 670
750
Tensile Strength: Yield (Proof), MPa 460
570

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Maximum Temperature: Corrosion, °C 440
540
Maximum Temperature: Mechanical, °C 1050
860
Melting Completion (Liquidus), °C 1420
1430
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 14
22
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 2.8
4.9
Embodied Energy, MJ/kg 40
71
Embodied Water, L/kg 160
150

Common Calculations

PREN (Pitting Resistance) 26
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
190
Resilience: Unit (Modulus of Resilience), kJ/m3 520
830
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 24
27
Strength to Weight: Bending, points 22
23
Thermal Diffusivity, mm2/s 4.0
3.4
Thermal Shock Resistance, points 18
17

Alloy Composition

Boron (B), % 0
0.0030 to 0.0090
Carbon (C), % 0 to 0.030
0.070 to 0.13
Chromium (Cr), % 21.5 to 24.5
14 to 16
Copper (Cu), % 0.050 to 0.6
0
Iron (Fe), % 65 to 75.4
61.8 to 69.7
Manganese (Mn), % 0 to 2.5
5.5 to 7.0
Molybdenum (Mo), % 0.050 to 0.6
0.8 to 1.2
Nickel (Ni), % 3.0 to 5.5
9.0 to 11
Niobium (Nb), % 0
0.75 to 1.3
Nitrogen (N), % 0.050 to 0.2
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Vanadium (V), % 0
0.15 to 0.4