MakeItFrom.com
Menu (ESC)

S32304 Stainless Steel vs. C96300 Copper-nickel

S32304 stainless steel belongs to the iron alloys classification, while C96300 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S32304 stainless steel and the bottom bar is C96300 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
150
Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 28
11
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
49
Tensile Strength: Ultimate (UTS), MPa 670
580
Tensile Strength: Yield (Proof), MPa 460
430

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Maximum Temperature: Mechanical, °C 1050
240
Melting Completion (Liquidus), °C 1420
1200
Melting Onset (Solidus), °C 1380
1150
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
37
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.1

Otherwise Unclassified Properties

Base Metal Price, % relative 14
42
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 2.8
5.1
Embodied Energy, MJ/kg 40
76
Embodied Water, L/kg 160
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 170
59
Resilience: Unit (Modulus of Resilience), kJ/m3 520
720
Stiffness to Weight: Axial, points 14
8.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 24
18
Strength to Weight: Bending, points 22
17
Thermal Diffusivity, mm2/s 4.0
10
Thermal Shock Resistance, points 18
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.15
Chromium (Cr), % 21.5 to 24.5
0
Copper (Cu), % 0.050 to 0.6
72.3 to 80.8
Iron (Fe), % 65 to 75.4
0.5 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.5
0.25 to 1.5
Molybdenum (Mo), % 0.050 to 0.6
0
Nickel (Ni), % 3.0 to 5.5
18 to 22
Niobium (Nb), % 0
0.5 to 1.5
Nitrogen (N), % 0.050 to 0.2
0
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.020
Residuals, % 0
0 to 0.5