MakeItFrom.com
Menu (ESC)

S32550 Stainless Steel vs. AISI 436 Stainless Steel

Both S32550 stainless steel and AISI 436 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 81% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S32550 stainless steel and the bottom bar is AISI 436 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 21
25
Fatigue Strength, MPa 400
190
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 540
320
Tensile Strength: Ultimate (UTS), MPa 860
500
Tensile Strength: Yield (Proof), MPa 620
270

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
460
Maximum Temperature: Mechanical, °C 1100
880
Melting Completion (Liquidus), °C 1440
1450
Melting Onset (Solidus), °C 1390
1410
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 20
12
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.8
2.7
Embodied Energy, MJ/kg 53
38
Embodied Water, L/kg 180
120

Common Calculations

PREN (Pitting Resistance) 40
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 940
190
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 4.4
6.7
Thermal Shock Resistance, points 23
18

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.12
Chromium (Cr), % 24 to 27
16 to 18
Copper (Cu), % 1.5 to 2.5
0
Iron (Fe), % 57.2 to 67
77.8 to 83.3
Manganese (Mn), % 0 to 1.5
0 to 1.0
Molybdenum (Mo), % 2.9 to 3.9
0.75 to 1.3
Nickel (Ni), % 4.5 to 6.5
0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030