MakeItFrom.com
Menu (ESC)

S32615 Stainless Steel vs. 6063A Aluminum

S32615 stainless steel belongs to the iron alloys classification, while 6063A aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S32615 stainless steel and the bottom bar is 6063A aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 28
6.7 to 18
Fatigue Strength, MPa 180
53 to 80
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 400
78 to 150
Tensile Strength: Ultimate (UTS), MPa 620
130 to 260
Tensile Strength: Yield (Proof), MPa 250
55 to 200

Thermal Properties

Latent Heat of Fusion, J/g 370
400
Maximum Temperature: Mechanical, °C 990
160
Melting Completion (Liquidus), °C 1350
640
Melting Onset (Solidus), °C 1310
620
Specific Heat Capacity, J/kg-K 500
900
Thermal Expansion, µm/m-K 15
23

Otherwise Unclassified Properties

Base Metal Price, % relative 24
9.5
Density, g/cm3 7.6
2.7
Embodied Carbon, kg CO2/kg material 4.4
8.3
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 170
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
13 to 21
Resilience: Unit (Modulus of Resilience), kJ/m3 160
22 to 280
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 23
13 to 26
Strength to Weight: Bending, points 21
21 to 33
Thermal Shock Resistance, points 15
5.6 to 11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
97.5 to 99
Carbon (C), % 0 to 0.070
0
Chromium (Cr), % 16.5 to 19.5
0 to 0.050
Copper (Cu), % 1.5 to 2.5
0 to 0.1
Iron (Fe), % 46.4 to 57.9
0.15 to 0.35
Magnesium (Mg), % 0
0.6 to 0.9
Manganese (Mn), % 0 to 2.0
0 to 0.15
Molybdenum (Mo), % 0.3 to 1.5
0
Nickel (Ni), % 19 to 22
0
Phosphorus (P), % 0 to 0.045
0
Silicon (Si), % 4.8 to 6.0
0.3 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.15
Residuals, % 0
0 to 0.15